How Can We Manage All This Information?
To tackle this problem, we can look to work that has been done in other fields, specifically human-computer interaction. Norman, in his discussion of user experience, describes the complexity curve in technology, with technologies starting off simply and growing more complex until they peak.6 At this point, they get simpler to use as the technology matures. He points to airplane instrumentation that peaked with the Concorde in the 1970s. Since then instruments have gotten much simpler, with cockpit automation and better displays and controls. This has made the user experience easier, more efficient, and more effective.
There is a parallel with Norman’s observations and our information management problem in medicine. Our display technologies (paper, computer screen) are actually quite mature and powerful. However, our ability to detect and measure physiologic data continues to rise and may be outpacing our display technologies. Are there techniques from our display technologies that can make this problem easier to deal with?
Here, it’s worth clarifying two terms: data display and information visualization. Data display is a method for arranging and presenting information in a way that is easily reviewed and assessed, such as tables and charts. Information visualization describes the manipulation of the data to make it more easily understood by humans. Specifically it has been described as “the process of transforming data, information and knowledge into visual form making use of humans’ natural visual capabilities.”7
Data Displays
The simplest way to present data is the data display. Data displays can be very simple (a paper report with a glucose value), or extremely complex. (Think of bus schedules or the stock price pages in a business newspaper.) A complex data display in the clinical arena (which doubles as a data collection tool) is the clinical flow sheet. Nurses use a combination of graphing (heart rate, blood pressure) and numerical entry (intravenous fluid rate, pain scale) to record data. The flow sheet is particularly useful in the ICU. A large amount of data can be scanned quickly and examined for trends and outliers.
An example of a useful clinical data display is Pocket Rounds, a paper clinical summary report developed at the Regenstrief Institute in Indianapolis, Ind. Pocket Rounds is a high-density display designed to present clinical information including allergies, lab results, vitals, imaging, and other diagnostic studies from inpatients on a single 8.5″ by 11″ page. It is printed in very small type that allows for two logical pages on one landscape-oriented sheet of paper. It is called Pocket Rounds because, when folded in half, the sheet of reports fits perfectly into a white coat pocket.
The strength of Pocket Rounds seems to be the richness of the content displayed all at once, allowing the user to focus on specific areas of the report by following visual formatting clues. Of course, a significant disadvantage of Pocket Rounds is that it is static, with data only as current as the time of printing. Both authors used Pocket Rounds during their training and wish it were a more widely available tool.
Powsner and Tufte proposed a much more sophisticated display of clinical data.8 Their display is really a hybrid of data display and visualization, as processing of the data points (normalization) improves the layout of the display. It is easy to examine the report and pick out important trends and outliers. Additionally, with some thought as to the arrangement of the data elements, different results are easy to compare (for instance, white count, gentamycin dosage, and serum creatinine.) Unfortunately, this display has not been tested to compare its effectiveness with that of any other display.