THE THEORY OF RELATIVITY: Einstein’s famous equation E=mc2 represents his theory of relativity. This equation represents the relationship between an object’s mass and its energy. Mass is represented by the formula M=DV where D is density and V=volume.
In a hospital setting we see this formula used in a corollary to Einstein’s, called the Theory of Relatives. When entering a patient’s room, one is often confronted with a large number of relatives, spouses, siblings, and the dreaded estranged children. These situations almost always require an increased amount of energy expenditure in communication, consensus building, and time.
As the absolute number (or volume) of family members increases, concurrent with any increased density on the individual members’ part, energy expenditure increases dramatically. This follows the mass equation closely. In situations where the density of an individual family member increases beyond measurable levels, one can enter a Black Hole scenario (see illustration).
BLACK HOLES: A black hole is a region of space-time from which nothing can escape—even light.
A black hole is a region of such extreme density that all energy is sucked into its gravitational field. Once exposed to a black hole situation, the observer may note expected phenomena, including absence of light, loss of energy, extreme fatigue and malaise, and a sensation of hopelessness. This effect can be seen in committee rooms or on the wards.
The only known remedies for this condition are avoidance or going off-service.
THE GIBBS FREE ENERGY EQUATION: The Gibbs free energy equation, G=H-(TS), is a thermodynamic formula and a measure of the conservation of energy. Simply put, the energy of a system is related to the enthalpy (H) or positive creative energy input minus the product of time and entropy, the natural tendency of systems to fall apart.
This effect can be seen in the creation of hospitalist programs.
A hospitalist program is sometimes created by an energetic entrepreneur responding to a vacuum or potential space. A great design leads to a functional program (G). The hospitalist (H) must continually put energy into maintaining the system, otherwise over time (T) entropy (S) takes hold and the system deteriorates. A hospitalist program can’t rely on its initial successful design to survive.
PARTICLE WAVE DUALITY: Quanta are bundles of energy. We see these basic units in the hospital on a nonsubatomic level.
Our admissions seem to come in waves. Our daily workload seems to come in waves as well. Yet the essential quantum of hospital medicine is the patient. RVUs may be 1.33, and LOS 3.2 days, and FTEs 0.8, but I have yet to see a patient-and-a-half in a room.
CRITICAL MASS: Critical mass is the smallest amount of fissionable material necessary to maintain a nuclear chain reaction at a constant level. The term is also used to denote an amount or level needed for a specific result or new action to occur. Happily the hospitalist movement in America has reached that self-sustaining critical mass.
CONCLUSION: As Sir Isaac Newton sat under the proverbial tree and watched a ripe Granny Smith drop on his noggin, little did he know how profoundly he would affect the world of hospital medicine. What goes up must come down. The patient admitted must be discharged. And the editorial started must eventually finish. TH
Jamie Newman, MD, FACP, is physician editor of The Hopitalist, and senior associate consultant, Hospital Internal Medicine and associate professor of internal medicine and medical history, Mayo Clinic College of Medicine at the Mayo Clinic College of Medicine, Rochester, Minn.